LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

Date: 29-04-2025

B.Sc. DEGREE EXAMINATION – **STATISTICS**

THIRD SEMESTER - APRIL 2025

Max.: 100 Marks

UST 3502 - MATRIX AND LINEAR ALGEBRA

Dept. No.

Tin	ne: 01:00 PM - 04:00 PM	
	SECTION A - K1 (CO1)	
	Answer ALL the Questions	$(10 \times 1 = 10)$
1.	Define the following	
a)	Hermitian matrix.	
b)	Rank of a matrix.	
c)	Vector Space.	
d)	Eigen values and vectors.	
e)	Quadratic forms.	
2.	Fill in the blanks	
a)	A matrix whose diagonal elements are the same and all other elements are zero is called	
	matrix.	
b)	The rank of a null matrix is	
c)	The system of equations $Ax = B$ is if rank of $(A) = rank (A B)$.	
d)	theorem can be used in computing inverse of a matrix.	
e)	matrices have determinant equal to zero.	
	SECTION A - K2 (CO1)	
	Answer ALL the Questions	$(10 \times 1 = 10)$
3.	Match the following	
a)	The diagonal elements of a Skew symmetric matrix is 2	
b)	Rank of A = $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 1 & 2 \end{bmatrix}$ Diagonal Matrix (D)	
c)	$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$	
d)	AA' = A'A = 0	
e)	$P^{-1}AP$ orthogonal matrix	
4.	True or False	
a)	A of a non-singular matrix is zero.	
b)	$(AB)^T = A^T B^T$	
c)	The number of linearly independent solutions of $(A-\lambda I) = 0$ is equal to n - rank of $ A-\lambda I $.	
d)	0 is a Characteristic root of a matrix iff the matrix is singular.	
e)	The number of non - zero eigen values of the matrix A is called rank of the quadratic for	m.
SECTION B - K3 (CO2)		
	wer any TWO of the following in 100 words each.	$(2 \times 10 = 20)$
5.	Solve the equation $2(x+B) = 3(x+A) + C$ where	
	$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 3 & 5 \end{bmatrix}, B = \begin{bmatrix} 4 & 1 & 2 \\ 3 & 2 & 5 \\ 1 & 2 & 0 \end{bmatrix} \text{ and } C = \begin{bmatrix} 0 & 1 & 3 \\ 4 & 1 & -2 \\ 3 & 1 & 3 \end{bmatrix}$	

6. Solve the equations using cramer rule.

$$x + y + z = -1$$

$$x + 2y + 3z = -4$$

$$x + 3y + 4z = -6$$

- 7. Categorize the properties of linear dependence/independence.
- 8. Obtain the matrices corresponding to the quadratic forms

(i)
$$x^2 + 2y^2 + 3z^2 + 4xy + 5yz + 6zx$$

$$(ii) ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy$$

SECTION C - K4 (CO3)

Answer any TWO of the following in 100 words each.

 $(2 \times 10 = 20)$

- 9. Categorize the properties of Determinants without proof.
- 10. Examine for what values of λ , μ the system of equations

$$x + y + z = 6$$

$$x + 2y + 3z = 10$$

$$x + 2y + \lambda z = \mu$$

have (i) no solution, (ii) a unique solution and (iii) an infinite number of solutions.

- 11. Examine the properties of Characteristic roots & vectors.
- 12. Discuss Homogenous and Non-Homogenous system of equations.

SECTION D – K5 ($\overline{\text{CO4}}$)

Answer any ONE of the following in 250 words

 $(1 \times 20 = 20)$

13. Find the matrix where Y = AX represents a linear transformation for which

$$\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} = A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix} = A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = A \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Also find the images of the vectors

$$a = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix} \text{ and } c = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} \text{ under this transformation and show that }$$

- (i) a and b are linearly independent.
- (ii) Aa and Ab are linearly independent
- (iii) a,b,c are linearly dependent.
- 14. State and prove Cayley Hamilton theorem.

SECTION E – K6 (CO5)

Answer any ONE of the following in 250 words

 $(1 \times 20 = 20)$

15.
$$| If A = \begin{bmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}, B = \begin{bmatrix} -3 & -6 & 2 \\ 2 & 4 & -1 \\ 2 & 3 & 0 \end{bmatrix}, C = \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$

Prove that (i) $A^2 = B^2 = C^2 = 1$

$$(ii)$$
 AB = BA = C

$$(iii)$$
 BC = CB = A

(iv)
$$AC = CA = B$$
.

16. Reduce the following symmetric matrix to a fundamental form and interpret the result of the quadratic

forms : A =
$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

\$\$\$\$\$\$\$\$\$\$\$\$\$